

Deploying the simple Two Component application

Deployment observations

Deploying a Spark application

Deployment observations

 Session III
3.1. Deploying the simple Two Component application

3.1.1. If you are not connected with the Melodic machine, open a terminal
and login.

ssh -i {{nameOfKey}} ubuntu@{{MELODIC-IP}}

3.1.2. Check if all component are ready for deploying using alias

mping

The result should be:

3.1.3. Create a directory models and copy the .xmi file

mkdir ~/models

cd ~/models/

wget

https://s3-eu-west-1.amazonaws.com/melodic.testing.data/cc

grid/TwoComponentApp.xmi

cd

3.1.4. Run the jar with following command and wait for model successfully
stored into CDO

java

-Deu.paasage.configdir=/home/ubuntu/utils/cdo-uploa

der/src/main/resources -jar

cdo-uploader-1.0.1-SNAPSHOT-jar-with-dependencies.j

ar

3.1.5. Kill the CDO Uploader process by ctrl+C
3.1.6. Open the following link

https://reqbin.com/nwcfx5p2

3.1.7. In bookmark Content update values from the table. If you created a

different credentials for the user, please update the username and
password accordingly.

variable name value

melodic-host your machine public
ip

https://s3-eu-west-1.amazonaws.com/melodic.testing.data/ccgrid/TwoComponentApp.xmi
https://s3-eu-west-1.amazonaws.com/melodic.testing.data/ccgrid/TwoComponentApp.xmi
https://reqbin.com/nwcfx5p2
https://reqbin.com/s7dnl47k

aws-user notes

aws-secret notes

nodeGroup your name*

user your name*

* minimum 4 signs, lower case, without special signs and spaces

3.1.8. Alternatively, you can send the request using curl. To do that, replace
variables accordingly to the table and use following command.

curl -X POST -H 'x-api-key: secure' -H 'Cache-Control: no-cache' -H

'Content-Type: application/json' -d '{

 "applicationId": "TwoComponentApp",

 "username": "user1",

 "password":"ccgrid",

 "cloudDefinitions":

 [

 {

 "endpoint": null,

 "cloudType": "PUBLIC",

 "api": {

 "providerName": "aws-ec2"

 },

 "credential": {

 "user": "{{AWS KEY}}",

 "secret": "{{AWS SECRET}}"

 },

 "cloudConfiguration": {

 "nodeGroup": "{{YOUR NAME}}",

 "properties": {

 "sword.ec2.ami.query": "image-id=ami-09f0b8b3e41191524",

 "sword.ec2.ami.cc.query": "image-id=ami-09f0b8b3e41191524",

 "sword.default.securityGroup": "sg-000c94554210d1820"

 }

 },

"id": "f009efe1c9d7dfbf962fd13d03b1498e"

 }

],

 "watermark": {

 "user": "{{YOUR NAME}}",

 "system": "UI",

 "date": "2016-02-28T16:41:41+0000",

 "uuid": "fb6280ec-1ab8-11e7-93ae-92361f002AAA"

 }

}' -v -i 'http://{{MELODIC IP}}:8088/api/frontend/deploymentProcess'

3.1.9. If configurations are set properly, send the request.

3.2. Deployment observations

3.2.1. It is possible to see the process view using Camunda on

{{MELODIC-IP}}:8095
admin/admin

3.2.2. Check the logs of the components. For example in the CP Solver log
you can find the chosen configuration that will be deployed:

tail -300f logs/cpsolver.log

3.2.3. In the AWS console new components should be visible after few

minutes. Find your instance out typing the instance name

3.2.4. Let’s do a simple test if application works properly:

http://{{application-ip-host}}:9999/demo/all

3.2.5. Save name and e-mail to the database

http://{{application-ip-host}}:9999/demo/add?name=Name&email=email
@melodic.com

3.2.6. Check if it has been saved.

http://{{application-ip-host}}:9999/demo/all

3.3. Deploying a Spark application

3.3.1. If you deployed the TwoComponentApplication previously, you need to
restart the Melodic. Use command:

drestart

3.3.2. If you are not connected with the Melodic machine, open a terminal
and login.

ssh -i {{nameOfKey}} ubuntu@{{MELODIC-IP}}

3.3.3. Wait until or check if all components are ready to deploy. You can
check the status of each component using command:

mping

3.3.4. Open directory models/ (if you do not have one, create: $mkdir

~/models) and download the .xmi file of the Genome Spark application

cd ~/models/

wget

https://s3-eu-west-1.amazonaws.com/melodic.testing.

data/ccgrid/Genomnew.xmi

3.3.5. Set AWSKEY and AWSSECRET from the note and run commands

sudo sed -i "s/AWSKEY/{{YOUR AWS KEY}}/g"

~/models/Genomnew.xmi

https://s3-eu-west-1.amazonaws.com/melodic.testing.data/ccgrid/Genomnew.xmi
https://s3-eu-west-1.amazonaws.com/melodic.testing.data/ccgrid/Genomnew.xmi

sudo sed -i "s/AWSSECRET/{{YOUR AWS SECRET}}/g"

~/models/Genomnew.xmi

3.3.6. Run the jar with following command and wait for model successfully

stored into CDO

cd

java

-Deu.paasage.configdir=/home/ubuntu/utils/cdo-uploa

der/src/main/resources -jar

~/cdo-uploader-1.0.1-SNAPSHOT-jar-with-dependencies

.jar

3.3.7. Kill the CDO Uploader process by ctrl+C

3.3.8. Open the following link

https://reqbin.com/147fhy9g

3.3.9. In bookmark Content update values from table. If you created a

different credentials for the user, please update the username and
password accordingly.

variable name value

melodic-host your machine public
ip

aws-user notes

aws-secret notes

nodeGroup your name*

user your name*

* minimum 4 signs, lower case, without special signs and spaces

3.3.10. Alternatively, you can send the request using curl. To do that, replace
variables accordingly to the table and use following command.

https://reqbin.com/147fhy9g
https://reqbin.com/s7dnl47k

curl -X POST -H 'x-api-key: secure' -H 'Content-Type: application/json' -H

'Cache-Control: no-cache' -d '{

 "applicationId": "Genomnew",

 "username": "user1",

 "password": "ccgrid",

 "cloudDefinitions":

 [

{

 "endpoint": null,

 "cloudType": "PUBLIC",

 "api": {

 "providerName": "aws-ec2"

 },

 "credential": {

 "user": "{{AWS USER}}",

 "secret": "{{AWS SECRET}}"

 },

 "cloudConfiguration": {

 "nodeGroup": "{{YOUR NAME}}",

 "properties": {

 "sword.ec2.ami.query": "image-id=ami-08a0a7bee3f024aeb",

 "sword.ec2.ami.cc.query": "image-id=ami-08a0a7bee3f024aeb"

 }

 },

 "id": "f009efe1c9d7dfbf962fd13d03b1498e"

 }

],

 "watermark": {

 "user": "{{YOUR NAME}}",

 "system": "UI",

 "date": "2016-02-28T16:41:41+0000",

 "uuid": "fb6280ec-1ab8-11e7-93ae-92361f002AAA"

 }

}

' -v -i 'http://{{MELODIC IP}}:8088/api/frontend/deploymentProcess'

3.3.11. If all configurations are set properly, send the request.

3.4. Deployment observations

3.4.1. It is possible to see the process view using Camunda on
{{MELODIC-IP}}:8095

3.4.2. Check the logs of the components. For example in the CP Solver log
you can find the chosen configuration that will be deployed:

tail -300f logs/cpsolver.log

3.4.3. In the AWS console new components should be visible after few
minutes. Find your instance out typing the instance name

3.4.4. To check if workers are correctly connected with the Spark Master,
check the

{{MELODIC-IP}}:8181

3.4.5. Check that the metrics are being correctly calculated and passed to the
MELODIC in the logs/metasolver.log.
Logs with values of MinimumCores metric should be visible there.

3.4.6. After around 10 minutes, the reconfiguration should start and more
instances should be visible in the AWS console and in the Spark
Master UI.

